Search results for "Germ cells"

showing 10 items of 37 documents

High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Sper…

2015

The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows m…

0301 basic medicineMalePhysiologyMutantGene Expressionlcsh:MedicineArtificial Gene Amplification and ExtensionPolymerase Chain ReactionBiochemistryConserved sequence0302 clinical medicineSequencing techniquesReproductive PhysiologyAnimal CellsInvertebrate GenomicsMedicine and Health SciencesDrosophila ProteinsProtein IsoformsCell Cycle and Cell Divisionlcsh:ScienceConserved SequencePhylogenyGeneticsRegulation of gene expressionMultidisciplinarybiologyChromosome BiologyDrosophila MelanogasterMessenger RNAHigh-Throughput Nucleotide SequencingRNA sequencingAnimal ModelsGenomicsSpermatidsInsectsNucleic acidsMeiosisCell ProcessesDrosophilaDrosophila melanogasterTranscription Initiation SiteCellular TypesDrosophila ProteinPolypyrimidine Tract-Binding ProteinResearch ArticleArthropodaMolecular Sequence DataReal-Time Polymerase Chain ReactionResearch and Analysis Methods03 medical and health sciencesModel OrganismsGeneticsAnimalsPolypyrimidine tract-binding proteinRNA MessengerSpermatogenesisMolecular Biology TechniquesMolecular BiologyBinding SitesBase SequenceGene Expression Profilinglcsh:ROrganismsBiology and Life SciencesCell BiologyReverse Transcriptase-Polymerase Chain Reactionbiology.organism_classificationInvertebratesExon skippingSpermGene expression profiling030104 developmental biologyGene OntologyGerm CellsGene Expression RegulationAnimal GenomicsMutationbiology.proteinRNAlcsh:QTranscriptome030217 neurology & neurosurgeryPLoS ONE
researchProduct

When Three Isn't a Crowd: A Digyny Concept for Treatment-Resistant, Near-Triploid Human Cancers.

2019

Near-triploid human tumors are frequently resistant to radio/chemotherapy through mechanisms that are unclear. We recently reported a tight association of male tumor triploidy with XXY karyotypes based on a meta-analysis of 15 tumor cohorts extracted from the Mitelman database. Here we provide a conceptual framework of the digyny-like origin of this karyotype based on the germline features of malignant tumors and adaptive capacity of digyny, which supports survival in adverse conditions. Studying how the recombinatorial reproduction via diploidy can be executed in primary cancer samples and HeLa cells after DNA damage, we report the first evidence that diploid and triploid cell sub-populati…

0301 basic medicineMalelcsh:QH426-470DNA repairKaryotypeSpindle ApparatusDigynyBiologyGenomeGermline03 medical and health sciencesnear-triploid cancer0302 clinical medicineMeiosisNeoplasmsGeneticsTumor Cells Culturedtumor blastomeresHumansGeneGenetics (clinical)GeneticsChromosomes Human XChromosomes Human YModels Geneticfungifood and beverageschemoresistancereprogrammingKaryotypeConcept Papertripolar mitosisTriploidyradioresistancelcsh:GeneticsMeiosis030104 developmental biologyGerm Cellspedogamy030220 oncology & carcinogenesisNeoplastic Stem Cellspolynuclear cancer cellsPloidyHeLa CellsdigynyGenes
researchProduct

SNVSniffer: an integrated caller for germline and somatic single-nucleotide and indel mutations

2016

Various approaches to calling single-nucleotide variants (SNVs) or insertion-or-deletion (indel) mutations have been developed based on next-generation sequencing (NGS). However, most of them are dedicated to a particular type of mutation, e.g. germline SNVs in normal cells, somatic SNVs in cancer/tumor cells, or indels only. In the literature, efficient and integrated callers for both germline and somatic SNVs/indels have not yet been extensively investigated. We present SNVSniffer, an efficient and integrated caller identifying both germline and somatic SNVs/indels from NGS data. In this algorithm, we propose the use of Bayesian probabilistic models to identify SNVs and investigate a mult…

0301 basic medicineSomatic cellBayesian probabilityBiologyPolymorphism Single NucleotideGermline03 medical and health sciencesGene FrequencyINDEL MutationStructural BiologyModelling and SimulationIndel callingGenetic variationHumansAlleleIndelMolecular BiologyOvarian NeoplasmsGeneticsResearchApplied MathematicsComputational BiologyHigh-Throughput Nucleotide SequencingSNP callingSomatic SNV callingCystadenocarcinoma SerousComputer Science ApplicationsGerm Cells030104 developmental biologyBayesian modelModeling and SimulationMutation (genetic algorithm)FemaleMultinomial distributionAlgorithmsBMC Systems Biology
researchProduct

Co-chaperone Hsp70/Hsp90-organizing protein (Hop) is required for transposon silencing and Piwi-interacting RNA (piRNA) biogenesis

2017

Piwi-interacting RNAs (piRNAs) are 26–30-nucleotide germ line-specific small non-coding RNAs that have evolutionarily conserved function in mobile genetic element (transposons) silencing and maintenance of genome integrity. Drosophila Hsp70/90-organizing protein homolog (Hop), a co-chaperone, interacts with piRNA-binding protein Piwi and mediates silencing of phenotypic variations. However, it is not known whether Hop has a direct role in piRNA biogenesis and transposon silencing. Here, we show that knockdown of Hop in the germ line nurse cells (GLKD) of Drosophila ovaries leads to activation of transposons. Hop GLKD females can lay eggs at the same rate as wild-type counterparts, but the e…

0301 basic medicineTransposable elementendocrine systemPiwi-interacting RNABiologyBiochemistryGenomic InstabilityHop (networking)Animals Genetically Modified03 medical and health sciences0302 clinical medicineAnimalsDrosophila ProteinsGene silencingGene SilencingRNA Small InterferingMolecular BiologyJanus KinasesGeneticsGene knockdownurogenital systemOvaryRNACell BiologyPhenotypeDrosophila melanogasterGerm Cells030104 developmental biologyAccelerated CommunicationsArgonaute ProteinsDNA Transposable ElementsFemale030217 neurology & neurosurgeryBiogenesisDNA DamageTranscription FactorsJournal of Biological Chemistry
researchProduct

Extra-Adrenal Adult Neuroblastoma With Aberrant Germ Cell Marker Expression: Maturation After Chemotherapy as an Important Clue to a Challenging Diag…

2019

Adult neuroblastoma is an extremely infrequent neoplasm, usually occurring in the adrenal medulla or in the paraspinal sympathetic ganglia, as its childhood counterpart. We report a very unusual case of a Schwannian stroma-poor adult neuroblastoma of inguinal location, showing aberrant expression of germ cell markers: SALL4 and OCT4. This aberrant marker expression, the unusual positivity for NKX2.2 and the very scattered (instead of diffuse strong) PHOX2B expression, complicated the initial diagnosis. In this case, the posttreatment histological evaluation revealed the neuroblastic nature of the lesion. Neuroblastoma maturation after treatment is an unusual finding in adults, and in this …

AdultMalePathologymedicine.medical_specialtymedicine.medical_treatmentInguinal CanalBiologyPathology and Forensic MedicineDiagnosis DifferentialLesionNeuroblastomaSALL4NeuroblastomaAntineoplastic Combined Chemotherapy ProtocolsBiomarkers TumormedicineHumansIfosfamideCyclophosphamideEtoposideHomeodomain ProteinsChemotherapyExtra-AdrenalNuclear ProteinsChemoradiotherapymedicine.diseaseGerm CellsHomeobox Protein Nkx-2.2medicine.anatomical_structureVincristineAbdominal NeoplasmsDactinomycinSurgeryAnatomymedicine.symptomAdrenal medullaOctamer Transcription Factor-3Germ cellAfter treatmentTranscription FactorsInternational Journal of Surgical Pathology
researchProduct

Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells

2013

Summary Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear a…

Cell NucleusFilaminsaktiiniCell Membranemacromolecular substancesCadherinsArticleActinsActin CytoskeletonDrospphilaGerm CellsAnimalsDrosophila ProteinsDrosophilaPseudopodiakehitysbiologiaactinDevelopmental Biology
researchProduct

To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm

2021

In the human embryo, the genetic program that orchestrates germ cell specification involves the activation of epigenetic and transcriptional mechanisms that make the germline a unique cell population continuously poised between germness and pluripotency. Germ cell tumors, neoplasias originating from fetal or neonatal germ cells, maintain such dichotomy and can adopt either pluripotent features (embryonal carcinomas) or germness features (seminomas) with a wide range of phenotypes in between these histotypes. Here, we review the basic concepts of cell specification, migration and gonadal colonization of human primordial germ cells (hPGCs) highlighting the analogies of transcriptional/epigene…

EpigenomicsMalePluripotent Stem Cellsendocrine systemCell typeTranscription GeneticQH301-705.5PopulationReviewBiologygermlineCatalysisGermlineInorganic ChemistryTesticular Neoplasmsmedicineprimordial germ cellsHumansEpigeneticsBiology (General)Physical and Theoretical ChemistryeducationGonadsQD1-999Molecular BiologySpectroscopyeducation.field_of_studySettore BIO/16Organic ChemistryEG cellsTeratomaEmbryogerm cell tumorCell DifferentiationGeneral MedicineNeoplasms Germ Cell and Embryonalmedicine.diseaseComputer Science ApplicationsCell biologyChemistrymedicine.anatomical_structureGerm CellsExtragonadal Germ Cell TumorEG cells; germ cell tumor; germline; primordial germ cellsGerm cell tumorsGerm cell
researchProduct

Nanog Regulates Primordial Germ Cell Migration Through Cxcr4b

2010

Abstract Gonadal development in vertebrates depends on the early determination of primordial germ cells (PGCs) and their correct migration to the sites where the gonads develop. Several genes have been implicated in PGC specification and migration in vertebrates. Additionally, some of the genes associated with pluripotency, such as Oct4 and Nanog, are expressed in PGCs and gonads, suggesting a role for these genes in maintaining pluripotency of the germ lineage, which may be considered the only cell type that perpetually maintains stemness properties. Here, we report that medaka Nanog (Ol-Nanog) is expressed in the developing PGCs. Depletion of Ol-Nanog protein causes aberrant migration of …

Fish ProteinsHomeobox protein NANOGChromatin ImmunoprecipitationReceptors CXCR4endocrine systemCell typeGenotypeOryziasBiologyNanogCxcr4bOpen Reading FramesCell MovementAnimalsPromoter Regions Genetic3' Untranslated RegionsGeneIn Situ Hybridizationreproductive and urinary physiologyHomeodomain ProteinsRegulation of gene expressionMessenger RNABinding SitesReverse Transcriptase Polymerase Chain Reactionurogenital systemThree prime untranslated regionPGCGene Expression Regulation DevelopmentalCell BiologyImmunohistochemistryPhenotypeMolecular biologyChemokine CXCL12MedakaGerm CellsPhenotypeGene Knockdown Techniquesembryonic structuresMolecular Medicinebiological phenomena cell phenomena and immunityChromatin immunoprecipitationDevelopmental BiologyStem Cells
researchProduct

The time to prevent mendelian genetic diseases from donated or own gametes has come

2015

GeneticsOocyte DonationGenetic Carrier ScreeningGenetic Diseases InbornInfant NewbornObstetrics and GynecologyGenetic CounselingBiologysymbols.namesakeGerm CellsReproductive MedicinePregnancyMendelian inheritancesymbolsHumansFemaleFertility and Sterility
researchProduct

The germ cell nuclear factor (GCNF)

2005

The germ cell nuclear factor (GCNF), which is also known as RTR (retinoid receptor-related testis-associated receptor) is a member of the nuclear receptor superfamily. As a natural ligand remains to be discovered, GCNF is referred to as an orphan receptor. Owing to GCNF's unique features and its distant relation to any other known nuclear receptor it has been classified as the only member of the subgroup six and designated NR6A1 by the Receptor Nomenclature Committee (Duarte et al., 2002: Nucleic Acids Res 30: 364-368). To date, GCNF has been cloned from distinct vertebrate species, including zebrafish, Xenopus laevis, mouse, rat, and human. Cloning and characterization of the gene, domain …

Germ cell nuclear factorXenopusEmbryonic DevelopmentReceptors Cytoplasmic and NuclearNuclear Receptor Subfamily 6 Group A Member 1GeneticsmedicineAnimalsHumansZebrafishGeneGeneticsOrphan receptorCloningbiologyGene Expression Regulation DevelopmentalCell DifferentiationCell Biologybiology.organism_classificationDNA-Binding ProteinsGerm Cellsmedicine.anatomical_structureNuclear receptorVertebratesGerm cellDevelopmental BiologyMolecular Reproduction and Development
researchProduct